If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49x^2-42x+4=0
a = 49; b = -42; c = +4;
Δ = b2-4ac
Δ = -422-4·49·4
Δ = 980
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980}=\sqrt{196*5}=\sqrt{196}*\sqrt{5}=14\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-42)-14\sqrt{5}}{2*49}=\frac{42-14\sqrt{5}}{98} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-42)+14\sqrt{5}}{2*49}=\frac{42+14\sqrt{5}}{98} $
| 9a-12-4a=-57 | | (6x+11)+(4x+11)=12x+14 | | 6s−2s=20 | | 12x=4+2x=29 | | 4x+3(36-x)=-3 | | 10–2v=-5v–50 | | 7x-2=5x-x+5 | | 3(9+x)=144 | | X^2-4x-100=-4x | | 3x^2-5x+288=0 | | 6(z−1)= 24 | | 90=6x-6 | | 6(z−1)= 24 | | -6m+7=109 | | 2-4k=-74 | | 7(d+2)+13=48 | | u+15=40 | | (4x-20)(3x+14)=155 | | 6(3x+4)=18 | | j+51=-20 | | 0.5*(-x+0.5)=0 | | 4^(x-4)=1024 | | f-10=0 | | (9x-8)=(7x+14) | | 0.9m+6.3=0.2m+9.1 | | A=6x-18B=14x+38 | | 8-j=7 | | ∠A=6x-18∠B=14x+38 | | t-8/2=1 | | (9x+8)=(7x+14) | | 3(p-8)=18 | | 3=9/f |